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Abstract—This paper describes and evaluates three end-to-end
workflows from capture to reconstruction including photogram-
metry, 3D Gaussian splatting (GS), and extraction of textured
meshes from splats with the explicit aim of individuals unfamiliar
with 3D reconstruction creating backdrops for virtual production
with a central presenter by using a smartphone as capture device.
We show that GS significantly outperforms the alternatives in our
experiments.

Index Terms—Gaussian Splats, 3D Reconstruction, Pho-
togrammetry

I. INTRODUCTION

Recently, the importance of 3D Gaussian Splatting (GS)
in the space of 3D reconstruction has risen dramatically.
The highly realistic rendering quality, real-time rendering
capability as well as ease of creation of GS lends itself well for
various use cases where high fidelity and realistic depictions
of reality are important. One such market is virtual production
which has been targeted by a variety of companies specializing
in novel radiance field technologies [3], [27].

However, there is still a severe lack of quality compar-
isons to existing technology, namely photogrammetry which
is established in many software implementations. We present
a pilot study which focuses on accessible workflows for the
creation of static 3D reconstructions by non-professional end-
users for the use in home virtual production and compares
novel 3D reconstruction technology with established pho-
togrammetry methods.

This paper makes the following contributions:

o Visual and preference-backed comparisons of established
photogrammetry and novel methods with respect to cap-
ture of rooms.

o Guidance instructions on the capture of rooms.

o A summary of issues that continue to plague previous
and novel methods.

II. RELATED WORK

Digital photogrammetry is the recreation of 3D scenes from
2D measurements, namely photographs. Besides the novel
GS, several existing methods fall under the umbrella term of
photogrammetry [2]. One such photogrammetry method that
is still relevant even in novel photogrammetric techniques is
Structure from Motion (SfM) [24].

Gaussian Splatting (GS) has been employed in computer
graphics for decades as an enhanced form of point-cloud
representation that encodes richer geometric and appearance

information (e.g., [40]). Conceptually, it sits between tradi-
tional point clouds and full volumetric techniques, linking
it to both volume rendering [30] and modern radiance-field
methods [16]. Despite these merits, GS long remained a niche
choice within mainstream graphics pipelines.

That changed in 2023, when a landmark study [12] demon-
strated that, combined with contemporary machine-learning,
GS can dramatically improve 3D reconstruction and novel-
view synthesis-much as Neural Radiance Fields (NeRF) had
done earlier [16]. By optimizing Gaussians directly from
multi-view images, the method produces photorealistic ren-
derings of real-world scenes that frequently surpass classical
techniques. The surge of interest has sparked a wave of ex-
tensions, refinements, and applications [4]. The output format
of GS is commonly abbreviated as “’splat”.

As 3D meshes are still the standard in the modern graphics
pipeline, several studies have sought to address these short-
comings of GS. 2D Gaussian Splatting (2DGS) [9] enforces
surface modeling of GS using surfels, resulting in smooth
surfaces which enables high quality mesh extractions which
was previously not possible with GS.

III. METHODOLOGY

We selected three main reconstruction methods and two
output formats for the scene reconstruction workflows, an
overview of which can be seen in Fig. 1.
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Fig. 1: The tested workflows rely on RGB images as input
material and result in either splats or meshes as outputs.

A. Capture

In preparation of the specialized room capture, guidance
instructions were created through experimental capture and
reconstruction of room scenes. The devices were smartphones
(iPhone 14 Pro) as this device type is the most likely to be in



end-users’ hands. For smartphone captures, two lenses/sensors
(1: 24mm, £1.78, 2: 13mm, f2.2') were used and one capture
was created for each.

For the final captures, seven different scenes were selected,
one of which was a complete room, whereas others were
captured as backdrops (one side of room). The rooms can
be seen in the evaluation, see Fig.2.

B. Reconstruction

As our focus is on workflows that are accessible for end
users, we selected corresponding methods in each category,
and optimized their results in a best-effort manner. While
this is not using the exactly same input data, it gives a good
performance indication from a user perspective. The following
methods were selected:

1) GS: Postshot (PS) [19] is one of the leading software
products for GS techniques. Unlike most high-level end-to-
end platforms that use GS, PS allows the adjustment of GS
parameters. For the reconstruction in PS, we set 30, 000 steps
of optimization and targeted 1000k Gaussians. We kept the
default image size limit of 1600 pixels. In PS, this setting
applies to the longer image side. We also kept the default
Radiance Profile SplatMCMC, likely based on 3DGS-mcmc
[13].

2) 2DGS: Mesh and Texture Reconstruction via GS (2DGS
+ TSDF Meshing + MVS Texturing). Abbrev.: 2DGS.

We used 2DGS over alternative methods [6], [38] because
it performed best in our preliminary tests. We extend the
workflow of 2DGS by a texturing stage that we saw in use in
Gaustudio [35]. For the SfM stage we use Colmap’s Automatic
Reconstruction with mostly default settings. We set “Shared
Intrinsics” and use the smallest pretrained vocabulary tree [25].
For the GS optimization stage, default settings were used. In
our case, all images are captured in portrait, so the shorter side
is resized to 1600 pixels. We added a texturing stage that relies
on the texrecon tool from mvs-texturing [17]. We prepared our
SfM dataset for texturing by resizing all images to a maximum
of 2000 pixels on the shorter side and exporting the camera
data to .cam format via Colmap’s model_converter tool.

3) Photogrammetry: RealityCapture (RC) [20].

For the photogrammetry workflow RC was used end-to-end.
RC is an established software specialized on reconstruction of
scenes from RGB images. We mostly used default settings to
create the reconstructions. We only changed:

o sfmMaxFeaturesPerImage: 40000 — 80000

o sfmMaxFeaturesPerMpx: 10000 — 20000

o stmBackgroundDetectThreadPriority: Low — Normal
o sfmlmagesOverlap: Medium — Low

o sfmBackgroundDetectFeatures: False — True

IV. EVALUATION

For evaluation, each scene was rendered using a GS recon-
struction of a person as a stand-in for a virtual presenter, with
videos generated on a consistent camera trajectory circling

Focal length is full-frame equivalent, not real focal length.

around the presenter. See Fig. 2, all videos and 3D recon-
structions are available online [8].

In preparation, we rated the renderings (see Table I) using
a 5-point quality scale. The ratings of the wider lens captures
were generally higher with reconstructions from the narrower
lens captures having more issues with missing parts.

Photogrammetry with RC achieves an average scene rating
of 1.5, meshing and texturing achieves a rating of 1.786 and
GS attains a much higher average rating of 3.21 across all
scenes (Tab. I).

Scene Rating (GS) Rating (2DGS) Rating (RC)
Chapel 3.5 2
Lecture Room 3.5 2

Lecture Hall 3.5 2.5 2.5
Meeting Room 2 2

Office Space 3 2

Outdoor Scene 4

Cluttered Space 3 2.5 2
Mean Values 3.21 1.86 1.50

TABLE I: Scene-specific ratings colour-coded from red (low)
to green (high) of reconstructions from avg. of 23mm and
13mm lens captures.
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Fig. 2: Visual comparisons, order as in TABLE 1.

The videos were further used in an two-alternative forced-
choice (2AFC) task, which was distributed as an online survey
to members of the University and the public. Participants were
presented with two videos using two different reconstruction
methods and had to select which video they prefer in terms
of visual quality. The test featured the same environments as
described in Fig. 2 with three pairwise comparisons for each
scene: GS vs. Photogrammetry with RealityCapture (RC), GS
vs. 2DGS, and RC vs. 2DGS. Only videos with the better
preliminary rating (wide lens vs. narrow lens) were selected
for this task. We used exact binomial tests to compare method
preferences (N = 203 choices per comparison, 29 participants.
See Table I1.). GS was significantly preferred over RC (96.6%,



p < 0.001) and 2DGS (98.0%, p < 0.001). 2DGS was also
significantly preferred over RC (80.3%, p < 0.001).

Comparison | Preferred Method (%) | p-Value

GS vs. RC | GS (96.6%) | <0.001
GS vs. 2DGS | GS (98.0%) | <0.001
RC vs. 2DGS | 2DGS (80.3%) | <0.001

TABLE II: Results of the pairwise comparisons between
Gaussian Splats (GS), Photogrammetry with RealityCapture
(RC), and 2DGS.

V. DISCUSSION

In this paper we evaluated three accessible end-to-end
workflows and evaluated them in pairwise comparisons under
our specific experimental conditions. We found that GS was
consistently preferred in terms of visual quality. We found
many issues that still plague the technology and make captures
more difficult.

The capture guidelines secure high image match ratios
except for RC where the achieved image overlap seems to
be insufficient. RC delivers excellent textures but its strict
matching yields low match ratios that cause holes, missing
fine details and occasional catastrophic reconstructions, though
importing Colmap SfM data could alleviate these issues. RC
struggles with some reflective surfaces and transparencies but
copes well with others (see videos on webpage [8]), such as
the chapel floor. PS (GS) captures small details, reflections and
semi-transparent objects with superior fidelity yet often intro-
duces floaters and view-dependent colour flicker on uniform
walls under dynamic lighting. 2DGS meshes exhibit voxel-
related surface waviness, distorted or misplaced textures and
reflection-induced indentations or holes. Although GS by far
achieves the best visual quality, meshes are still relevant. They
are well-established and the standard in CGI and compatible
with physics simulation, whereas GS is still lacking and mostly
a visual feat.

We have identified several recurring problems and present
possible pathways for resolution.

1) Guidance: Capturing complete, high-quality image sets
is physically exhausting. A brief shooting guide helps, but
user skill still matters and even skilled users can have issues
with incomplete scene capture. App-level live previews as
in Scaniverse [23] or other software-based guidance mecha-
nisms, see [3], [21], ease the task. Robotics work that fuses
SLAM with GS [11], [18], [29], [37] could offer on-device
previews. Route-planning systems could automate coverage
[15], [26]. Active-view selection and uncertainty quantification
[10] could help making training more efficient and make
informed training data selections. Without more advanced
automated guidance, the capture of input material is more akin
to analogue photography than to any modern digital process.

2) Small Rooms: Tight spaces demand many shots because
close walls add little context and blank areas dominate; swap-

ping to a wider lens often helps but can introduce distortions
which are not problematic for some newer changes to GS [31].

3) Reconstructions of Rooms (2DGS, GS): Indoor scenes
quality could be improved; GaussianRoom [32] and GSDF
[36] jointly optimise signed-distance fields and splats to boost
accuracy.

4) Matching: Sparse image overlap impedes matching.
Deep models [5], [14] could align even low-overlap photos.

5) Dynamic Lighting: Lengthy captures under changing
sunlight skew colour and exposure. Bilateral-guided radiance
fields [28] and Splatfacto-w [33] both deal with this in their
own ways.

6) Background Modeling: Distant scenery can turn into
blobs; PS creates a GS globe around the scene which works
outdoors but may crash indoors. Masking far backgrounds and
reconstructing them separately could help both splat-to-mesh
and photogrammetry.

7) Reflections (2DGS, RC): Mirrors and glass create holes;
2DGS could mitigate them via directional-light factorisation
[39].

8) Dynamic Objects: These can sabotage static reconstruc-
tions, and should be masked manually or automatically [7],
[34]. Persistent intrusions may need masking plus 3D-guided
inpainting.

9) Floaters (GS): “Floaters” are stray Gaussians in empty
space. 3DGS-MCMC [13] (already in Postshot) reduces them;
3dgsconverter’s outlier removal [1] cleans finished splats

10) Level of Detail (GS): GS outputs a single heavy splat.
Producing multiple LoD versions—or introducing established
LoD concepts to GS [22]—Ilets large scenes render smoothly
on modest hardware.

VI. CONCLUSION

We evaluated 3 accessible photogrammetric workflows for
the reconstruction of rooms by user hand and showed that GS
consistently comes out on top with regards to visual quality
under our specific experimental conditions. In addition, we
presented potential resolutions to address current shortcomings
in photogrammetric workflows.

We also showed that the field of 3D reconstruction, although
progressing at break-neck pace, still has many areas where
improvements are necessary. One major issue common to all
methods and where we see the greatest potential is capture
guidance. If automated, it could make GS a more user-friendly
technology, paving the way to proper 3D digital photography
enriching immersive technology.
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